loss : function的失误率,采用loss最低的那个function
supervise learning
reinforce learning
Network Architecture:定义函数的搜寻范围,包括RNN,CNN
RNN -> Seq2seq
CNN -> GAN
Regression->Classification->RNN/CNN
CNN -> Unsupervised Learning(Auto-encoder) -> Anomaly Detection -> Transfer Learning (Domain Adversarial Learning) -> Meta Learning -> Life-long Learning -> Reinforecement Learning
CNN -> Explainable AI -> Adversarial Attack -> Network Compression
Explainable AI: 解释为何function可变辨识
Adversarial Attack:应对杂乱信息与攻击
Domain Adversarial Learning: 训练资料和测试资料分布很像,如果不接近呢
Meta Learning: Learn to Learn,让机器学习如何学习
Life-long Learning: 终身学习,又叫 Continuous Learning, Nerver End Learning
graph TB
A((Regression));
B((Classification));
C>RNN];
D>CNN];
E[\Seq2seq\];
F[\GAN\];
G>Unsupervised Learning];
H>Anomaly Detection];
I>Transfer Learning];
J(Meta Learning);
K[\Life-long Learning\];
L[\Reinforecement Learning\];
M(Explainable AI);
N>Adversarial Attack];
O{Network Compression};
A-->B;
B-->C;
C-->E;
B-->D;
D-->G;
D-->F;
D-->M;
M-->N;
N-->O;
G-->H;
H-->I;
I-->J;
J-->K;
K-->L;